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Generative Model Perspective

• We think of the data as being generated from some process

• We assume that this process is sampling data from an underlying distribution

• This distribution can be a parametric distribution (or called model), e.g., a 
Gaussian distribution, or a non-parametric distribution. We often prefer 
parametric distributions as they are easier to represent

• We infer model parameters from data

• Then we can use the model to explain or generate data
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Parametric Distribution

• Represent the underlying probability distribution with a parametric 
probability function

• Gaussian (normal) distribution, two parameters:

𝑝 𝑥; 𝜇, 𝜎2 =
1

2𝜋𝜎
𝑒
−
(𝑥−𝜇)2

2𝜎2

• View each point as generated from 𝑝 𝑥; 𝜇, 𝜎2
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Maximum Likelihood Estimation

• Our hypothesis space is Gaussian distributions

• Find parameter(s) 𝜽 that make a Gaussian most likely to generate 

data 𝑿 = (𝒙 1 , … , 𝒙 𝑁 ) 

• Likelihood function:

𝑙(𝜽) ≡ 𝑝 𝑿; 𝜽 =ෑ

𝑖=1

𝑁

𝑝 𝒙 𝑖 ; 𝜽

Only if 𝑿 are i.i.d.
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𝜽 ={𝜇, 𝜎2}



Likelihood Function

𝑙(𝜽) ≡ 𝑝 𝑿; 𝜽 =ෑ

𝑖=1

𝑁

𝑝 𝒙 𝑖 ; 𝜽

• In our Gaussian example, 𝒙 𝑖 is a continuous variable, 𝑝 𝒙 𝑖 ; 𝜽 is the 

probability density function (PDF)

– It is meaningless to talk about probability mass here, as the probability mass at any value 

of 𝒙 𝑖 is zero

• If 𝒙 𝑖 is a discrete variable (e.g., binary), 𝑝 𝒙 𝑖 ; 𝜽 should be replaced by the 

probability mass function 𝑃 𝒙 𝑖 ; 𝜽 . 

– It is meaningless to talk about probability density here, as the density will be infinite at the 
value of each data point
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Log-likelihood Function

• Likelihood function

𝑙(𝜽) ≡ 𝑝 𝑿; 𝜽 =ෑ

𝑖=1

𝑁

𝑝 𝒙 𝑖 ; 𝜽

• Log-likelihood function

𝐿(𝜽) ≡ log 𝑙(𝜽) =

𝑖=1

𝑁

log 𝑝 𝒙 𝑖 ; 𝜽

– Maximizing Log-likelihood  maximizing likelihood

– Easier to optimize

– Prevents underflow!

• What happens when multiplying 1000 probabilities? 
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Example Gaussian Log-likelihood

• Log-likelihood function

𝐿(𝜽) ≡ log 𝑙(𝜽) =

𝑖=1

𝑁

log 𝑝 𝒙 𝑖 ; 𝜽

• Recall 1-d Gaussian distribution (probability density function)

𝑝 𝑥; 𝜇, 𝜎2 =
1

2𝜋𝜎
𝑒
−
(𝑥−𝜇)2

2𝜎2

• So the log-likelihood of 1-d Gaussian would be:

𝐿 𝜇, 𝜎2 𝑋 = −
𝑁

2
log(2𝜋) − 𝑁 log 𝜎 −

σ𝑖=1
𝑁 𝑥 𝑖 − 𝜇

2

2𝜎2
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Maximizing Log-likelihood

• Log-likelihood of Gaussian:

𝐿 𝜇, 𝜎2 = 𝐶 − 𝑁 log 𝜎 −
σ𝑖=1
𝑁 𝑥 𝑖 − 𝜇

2

2𝜎2

• Take partial derivatives w.r.t. 𝜇 and 𝜎 and set them to 0, i.e., let 
𝜕𝐿

𝜕𝜇
= 0 and 

𝜕𝐿

𝜕𝜎
= 0.

• Then solve… (try it yourself), we get 

𝜇 =
1

𝑁


𝑖=1

𝑁

𝑥 𝑖 ; 𝜎2 =
1

𝑁


𝑖=1

𝑁

𝑥 𝑖 − 𝜇
2
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What if…

• …the data distribution can’t be well represented by a 
single Gaussian?

• Can we model more complex distributions using multiple 
Gaussians?
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Gaussian Mixture Model (GMM)

• Represent the distribution with a mixture of Gaussians

𝑝 𝑥 =
𝑗=1

𝐾

𝑃(𝑧 = 𝑗)𝑝 𝑥 𝑧 = 𝑗

The 𝑗-th Gaussian, 

parameter:(𝜇𝑗 , 𝜎𝑗
2)

Weight of 𝑗-th Gaussian.
Often notated as 𝑤𝑗

𝑧: a membership 

r.v. indicating 
which Gaussian 
that 𝑥 belongs to.
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𝑝 𝑥 =
𝑗=1

𝐾

𝑃(𝑧 = 𝑗)𝑝 𝑥 𝑧 = 𝑗

• 1. Randomly pick a component 𝑗, according to 𝑃 𝑧 = 𝑗 ;

• 2. Generate 𝑥 according to 𝑝(𝑥|𝑧 = 𝑗).

Generative Process for GMM
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• GMM distribution:

𝑝 𝑥 =
𝑗=1

𝐾

𝑃(𝑧 = 𝑗)𝑝 𝑥 𝑧 = 𝑗

=
𝑗=1

𝐾

𝑤𝑗 ∙
1

2𝜋𝜎𝑗
𝑒
−
(𝑥−𝜇𝑗)

2

2𝜎𝑗
2

• Three parameters per Gaussian in the mixture 𝑤𝑗 , 𝜇𝑗 , 𝜎𝑗
2, where 

σ𝑗=1
𝐾 𝑤𝑗 = 1

• Find parameters that maximize data likelihood

What are we optimizing?
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Maximum Likelihood Estimation of GMM

• Given 𝑿 = 𝑥 1 , … , 𝑥 𝑁 , 𝑥 𝑖 ~𝑝 𝑥 , log-likelihood is

𝐿 𝜽 =
𝑖=1

𝑁

log 𝑝 𝑥 𝑖 =
𝑖=1

𝑁

log 
𝑗=1

𝐾

𝑃 𝑧 𝑖 = 𝑗 ∙ 𝑝 𝑥 𝑖 |𝑧 𝑖 = 𝑗

= σ𝑖=1
𝑁 log σ𝑗=1

𝐾 𝑤𝑗 ∙
1

2𝜋𝜎𝑗
𝑒
−

𝑥 𝑖 −𝜇𝑗

2

2𝜎𝑗
2

• Try to solve parameters 𝜇𝑗 , 𝜎𝑗
2, 𝑤𝑗 by setting their partial 

derivatives to 0?

• No closed form solution. (Try it yourself)
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Why is maximum likelihood difficult for GMM?

• Each data point 𝑥 𝑖 has a membership random variable  𝑧 𝑖 , 

indicating which Gaussian it comes from

• But the value of 𝑧 𝑖 cannot be observed, i.e., we are uncertain

about which Gaussian 𝑥 𝑖 comes from

– 𝑧 𝑖 is a latent variable

• Latent variables can also be viewed as missing data, data that we 
do not observe
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If we know 𝑧 𝑖 , then maximum likelihood is easy

• 𝑤𝑗 =
1

𝑁
σ𝑖
𝑁 1 𝑧 𝑖 = 𝑗

• 𝜇𝑗 =
σ𝑖
𝑁 1 𝑧 𝑖 =𝑗 𝑥 𝑖

σ𝑖
𝑁 1 𝑧 𝑖 =𝑗

• 𝜎𝑗
2 =

σ𝑖
𝑁 1 𝑧 𝑖 =𝑗 𝑥 𝑖 −𝜇

2

σ𝑖
𝑁 1 𝑧 𝑖 =𝑗
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Indicator function:

1 𝑧 𝑖 = 𝑗 = ൝
1, if 𝑧 𝑖 = 𝑗;

0, if 𝑧 𝑖 ≠ 𝑗.

N = number of training examples



Illustration of “Soft” Membership

• Which component does point 𝑖 come from?

• The probability that it comes from 𝑗:

𝑞𝑗
(𝑖)

≡ 𝑃 𝑧 𝑖 = 𝑗|𝑥 𝑖
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1st component
2nd component

From 1st: 0.99
From 2nd: 0.01

1st: 0.5
2nd: 0.5

1st: 0.1
2nd: 0.9



Improving Our Posterior Probability

• The “posterior probability” of a Gaussian component given a data 
example is the probability that this data example was generated 
from this Gaussian component

• Let’s find a way to use posterior probabilities to make an algorithm 
that automatically creates a set of Gaussian components that would 
have been very likely to generate this data
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Expectation Maximization (EM)

• Instead of analytically solving the maximum likelihood parameter 
estimation problem of GMM, we seek an alternative way, the EM 
algorithm

• EM algorithm updates parameters iteratively

• In each iteration, the likelihood value increases (at least it does not 
decrease)

• EM algorithm always converges (to some local optimum)
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EM Algorithm Summary

• Initialize parameters
𝑤𝑗 , 𝜇𝑗 , 𝜎𝑗

2 for each Gaussian 𝑗 in our model

• E step: calculate posterior probabilities of latent variables
probability that these Gaussian components generated the data

• M step: update parameters

update 𝑤𝑗 , 𝜇𝑗 , 𝜎𝑗
2 for each Gaussian 𝑗

• Repeat E and M steps until convergence

go until parameters do not change much 

• It converges to some local optimum
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EM for GMM - Initialization

• Start by choosing the number of Gaussian components 𝐾

• Also, choose an initialization of parameters of all 

components 𝑤𝑗 , 𝜇𝑗 , 𝜎𝑗
2 for 𝑗 = 1,… , 𝐾

• Make sure σ𝑗=1
𝐾 𝑤𝑗 = 1
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EM for GMM – Expectation Step

For each 𝑥 𝑖 , calculate its “soft” membership, i.e., the posterior probability of 

𝑧 𝑖 , using current parameters

𝑞𝑗
(𝑖)

≡ 𝑃 𝑧 𝑖 = 𝑗|𝑥 𝑖 =
𝑃 𝑧 𝑖 = 𝑗, 𝑥 𝑖

𝑝 𝑥 𝑖

=
𝑝 𝑥 𝑖 |𝑧 𝑖 = 𝑗 𝑃 𝑧 𝑖 = 𝑗

σ𝑙=1
𝐾 𝑝 𝑥 𝑖 |𝑧 𝑖 = 𝑙 𝑃 𝑧 𝑖 = 𝑙

– Note: we are guessing the distribution (i.e., a “soft” membership) of 𝑧 𝑖 , 
instead of a “hard” membership 
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EM for GMM – Maximization step

– M step: update parameters.

𝑤𝑗 =
1

𝑁


𝑖=1

𝑁

𝑞𝑗
(𝑖)

𝜇𝑗 =
σ𝑖=1
𝑁 𝑞𝑗

(𝑖)
𝑥 𝑖

σ𝑖=1
𝑁 𝑞𝑗

(𝑖)

𝜎𝑗
2 =

σ𝑖=1
𝑁 𝑞𝑗

(𝑖)
𝑥 𝑖 − 𝜇𝑗

2

σ𝑖=1
𝑁 𝑞𝑗

(𝑖)

• Repeat E step and M step until convergence

– Convergence criterion in practice: likelihood value does not increase much
or parameters do not change much, compared to the previous iteration
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of 𝑥 𝑖 of the 𝑗-th
Gaussian.



EM Algorithm Summary

• Initialize parameters
𝑤𝑗 , 𝜇𝑗 , 𝜎𝑗

2 for each Gaussian 𝑗 in our model

• E step: calculate posterior probabilities of latent variables
probability that these Gaussian components generated the data

• M step: update parameters

update 𝑤𝑗 , 𝜇𝑗 , 𝜎𝑗
2 for each Gaussian 𝑗

• Repeat E and M steps until convergence

go until parameters do not change much 

• It converges to some local optimum
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What if…

• …our data isn’t just scalars, but each data point has 
multiple dimensions?

• Can we generalize to multiple dimensions?
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Multivariate Gaussian Mixture

𝑝 𝒙 =
𝑗=1

𝐾

𝑤𝑗 ∙
1

2𝜋
𝑑
2 𝚺𝑗

1
2

exp −
1

2
𝒙 − 𝝁𝑗

𝑇
𝚺𝑗
−1 𝒙 − 𝝁𝑗

• Parameters: 𝝁𝑗 , 𝚺𝑗 , 𝑤𝑗 for 𝑗 = 1,… , 𝐾, with σ𝑗=1
𝐾 𝑤𝑗 = 1.

• How many parameters? 

First dimension

Second dimension
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𝚺𝑗, the covariance 

matrix (𝑑 × 𝑑), 

describes the shape 
and orientation of 
an ellipse

𝝁𝑗, a mean 

vector, marks 
the center of an 
ellipse

𝑑: dimensionality

means covariances
weights

𝑑𝐾 +
𝑑(𝑑 + 1)

2
𝐾 + 𝐾



Example: 
Initialization

(Illustration from Andrew Moore's 
tutorial slides on GMM)
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After Iteration #1
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(Illustration from Andrew Moore's 
tutorial slides on GMM)
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After Iteration #2

28 28

(Illustration from Andrew Moore's 
tutorial slides on GMM)
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After Iteration #3

29 29

(Illustration from Andrew Moore's 
tutorial slides on GMM)
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After Iteration #4

30 30

(Illustration from Andrew Moore's 
tutorial slides on GMM)
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After Iteration #5

31 31

(Illustration from Andrew Moore's 
tutorial slides on GMM)
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After Iteration #6

32 32

(Illustration from Andrew Moore's 
tutorial slides on GMM)
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After Iteration #20

33 33

(Illustration from Andrew Moore's 
tutorial slides on GMM)



GMM Remarks

• GMM is powerful: any density function can be arbitrarily well 
approximated by a GMM with enough components

• If the number of components 𝐾 is too large, data will be overfit

– Likelihood always increases with 𝐾

– Extreme case: 𝑁 Gaussians for 𝑁 data points, with variances → 0, then 
likelihood → ∞

• How to choose 𝐾?

– Use domain knowledge

– Validate through visualization
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GMM is a “soft” version of K-means

• Similarities

– 𝐾 needs to be specified

– Converges to some local optima

– Initialization matters final results

– One would want to try different initializations

• Differences

– GMM assigns “soft” labels to instances

– GMM considers covariances in addition to means

• Each cluster is represented as an ellipse instead of a circle
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Using Generative Models for Classification
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GMM for Classification

1. Given 𝐷 = 𝑥 𝑖 , 𝑦 𝑖 , where 𝑦 𝑖 ∈ 1,… , 𝐶

2. Model 𝑝 𝑥|𝑦 = 𝑙 with a GMM, for each 𝑙

3. Calculate class posterior probability

𝑃 𝑦 = 𝑙 𝑥 =
𝑝 𝑥 𝑦 = 𝑙 𝑃(𝑦 = 𝑙)

σ𝑘=1
𝐶 𝑝 𝑥 𝑦 = 𝑘 𝑃(𝑦 = 𝑘)

4. Classify 𝑥 to the class having largest posterior.

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2023 37

Bayes 
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GMM for Regression

• Given 𝐷 = 𝑥 𝑖 , 𝑦 𝑖 , where 𝑦 𝑖 ∈ ℝ

• Model 𝑝 𝑥, 𝑦 with a GMM

• Compute 𝑓 𝑥 = 𝔼 𝑦|𝑥 , conditional expectation
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(illustration from Leon 
Bottou’s slides on EM)



Summary

• Maximum Likelihood (ML) estimation of parametric model’s parameters

– Update parameters to increase data likelihood

• GMM models data distribution with a mixture of 𝐾 Gaussians, with parameters 

𝝁𝑗 , 𝚺𝑗 , 𝑤𝑗 , for 𝑗 = 1,… , 𝐾

– No closed form solution for ML estimation of GMM parameters, due to latent variables

• How to estimate GMM parameters with EM algorithm?

– Iterative and greedy algorithm for maximum likelihood estimation with laten variables

• How is GMM related to K-means?

– Soft version of K-means; models data covariances in addition to means

• How to use GMM for classification and regression?
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